Table of Contents xi
Watching Out for Special Situations that Arise in Multiple
Regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Synergy and anti-synergy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Collinearity and the mystery of the disappearing significance. . . 246
Calculating How Many Participants You Need. . . . . . . . . . . . . . . . . . . 247
CHAPTER 18: A Yes-or-No Proposition: Logistic Regression. . . . . . 249
Using Logistic Regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Understanding the Basics of Logistic Regression. . . . . . . . . . . . . . . . . 251
Fitting a function with an S shape to your data . . . . . . . . . . . . . . . . . . 252
Handling multiple predictors in your logistic model . . . . . . . . . . . 255
Running a Logistic Regression Model with Software. . . . . . . . . . . . . . 256
Interpreting the Output of Logistic Regression. . . . . . . . . . . . . . . . . . . 257
Seeing summary information about the variables. . . . . . . . . . . . . 258
Assessing the adequacy of the model. . . . . . . . . . . . . . . . . . . . . . . 258
Checking out the table of regression coefficients. . . . . . . . . . . . . .259
Predicting probabilities with the fitted logistic formula. . . . . . . . . 260
Making yes or no predictions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262
Heads Up: Knowing What Can Go Wrong with
Logistic Regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Don’t misinterpret odds ratios for numerical predictors . . . . . . . 267
Beware of the complete separation problem. . . . . . . . . . . . . . . . . 267
Figuring Out the Sample Size You Need for Logistic Regression. . . . 268
CHAPTER 19: Other Useful Kinds of Regression. . . . . . . . . . . . . . . . . . . . 271
Analyzing Counts and Rates with Poisson Regression. . . . . . . . . . . . . 271
Introducing the generalized linear model. . . . . . . . . . . . . . . . . . . . 272
Running a Poisson regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Interpreting the Poisson regression output . . . . . . . . . . . . . . . . . . 275
Discovering other uses for Poisson regression. . . . . . . . . . . . . . . . 276
Anything Goes with Nonlinear Regression . . . . . . . . . . . . . . . . . . . . . . 279
Distinguishing nonlinear regression from other kinds. . . . . . . . . 279
Checking out an example from drug research. . . . . . . . . . . . . . . . 280
Running a nonlinear regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Interpreting the output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Using equivalent functions to fit the parameters
you really want. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Smoothing Nonparametric Data with LOWESS. . . . . . . . . . . . . . . . . . . 286
Running LOWESS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Adjusting the amount of smoothing. . . . . . . . . . . . . . . . . . . . . . . . . 289
CHAPTER 20: Getting the Hint from Epidemiologic Inference. . . 291
Staying Clearheaded about Confounding. . . . . . . . . . . . . . . . . . . . . . . 292
Avoiding overloading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
Adjusting for confounders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
Understanding Interaction (Effect Modification) . . . . . . . . . . . . . . . . . 296